

Final Year Project Plan

Project Title: Playing Othello by Deep Learning Neural Network

Author: Kuai Yu (David)

Supervisor: Prof. K.P. Chan.

UID: 2013507514

1

Abstract

On March 15
th

 2016, the Go-playing computer program known as AlphaGo took the world by

surprise as it won its fourth and final game against international Go champion Lee Sedol
i
. In

light of Google DeepMind’s recent achievement, this project aims to create a board-playing

artificial intelligence using similar approaches as AlphaGo but instead of Go, the program will

play the much simpler board game Othello using a combination of tree search algorithms and

neural networks. The program will be implemented in Python and will offer a simple graphical

user interface to play against human challengers.

Project Background

The AlphaGo program combines Monte-Carlo tree search with deep neural networks and is

trained by datasets of both human-played Go games as well as a series of games in which

AlphaGo played against other iterations of itself
ii
. This unique architecture allows AlphaGo to

effectively “learn” how to play Go overtime and improve its odds of winning with every game it

analyses. Furthermore, unique properties inherent to any deeply-layered neural network enables

the program to “predict” the odds of winning for any particular board layout based off data

extrapolated from past games and grants AlphaGo flexibility in playing.

This project aims to create an artificial intelligence much like AlphaGo in that multiple neural

networks will be optimized based on a set of training data and then used to predict the winning

moves in a completely independent game. A concise description of this process is shown in

figure. 1. However, instead of the game of Go, my program (henceforth named “IagoBot”) will

specialize in the game of Othello.

The layout of Othello is similar in appearance to that of Go. Except instead of a 19x19 board,

Othello is played on a much smaller 8x8 board. The rules of Othello are also somewhat different:

Although the two players still place alternating pieces of black or white stones on the board, a

player may only place a stone if it forms a continuous horizontal, vertical or diagonal line with

another stone of his color while sandwiching his opponent’s stones in the process. Once this

happens, all sandwiched stones are “captured” and transforms into the player’s color. The game

ends whenever the entire board is occupied by stones or neither player can make a legal move.

At the end of the game, the player with the greater number of stones on the board wins.

Otherwise it is considered a draw.

Owing to the small size of the 8x8 board, it is entirely possible to construct a strong Othello

program by utilizing only tree search algorithms that are capable of analyzing every potential

outcome produced by any legal move from a given board position
iii

. In fact, most existing

fig.1: The fundamental working

principle behind any machine learning

algorithm is its ability to adjust a matrix

of weight values over time based on an

input set of training data and the

desired outputs. These weight values

are then used in combination with new

data to produce a prediction.

2

Othello programs do not require any neural networks or subsequent “training” to attain a near-

perfect level of mastery over the game. Nevertheless, I feel that a deep-learning neural network

approach to the game warrants my further investigation for two reasons: Firstly, it offers me

valuable insight into the world of machine-learning, in which I have no prior experience.

Secondly, it would be interesting to see whether a deep-learning Othello program holds any

significant advantages over traditional tree-search programs, namely whether it is possible to

produce a program that is less exacting on physical resources such as CPU / RAM usage, as well

as intangible resources such as time.

Project Objectives & Deliverables

Toward the end of my project timeline, I aim to produce a single piece of portable program that

will satisfy the following objectives and criteria:

Firstly, the key technology behind the program should be two neural networks that work in

tandem to evaluate a game of Othello. Although the project specification stipulated the use of

deep learning neural networks, I still analyzed the advantages and disadvantages of many other

potential algorithms for machine learning such as the perceptron model, the support vector

machine, decision tree and linear regression to see how they compared to the neural network

model. My findings conclusively point to a neural network being the superior candidate for

modeling IagoBot owing to the fact that it allows for a 64 dimensional input space

(corresponding to the number of cells on an Othello board), which is where the perceptron and

linear regression models fail, as well as its ability to consist of n-numbers of hidden layers in

between the input and output layers so I can adjust the model on the fly as opposed to the support

vector machine which is a fixed parametric model.

iv

The two neural networks consist of a value network and a policy network. The former is

responsible for evaluating the position of a board in any given game for a selected player (in the

form of a double) while the latter makes decisions on which path to take in the game tree based

on the value network. The value and policy networks must then be combined in a tree-search

algorithm. An evaluation of this part of the project will be detailed in the methodology section.

Another constraint which IagoBot must abide by is that it must be a multi-threaded program. Due

to the fact that neural networks are much more costly to run than traditional search heuristics, a

multi-threaded approach which takes advantage of both CPU and GPU power is a must. The

exact number of threads to use will be determined at a later stage of the project.

fig.2: The value network. Each

node/neuron in this network takes a

rudimentary value such as (-1. 0. 1), to

indicate the state of that particular cell.

This value is combined with an initialized

weight value pertaining to that node and

then passed into an activation function.

Depending on the output of the activation

function, nodes in the hidden layer(s) may

or may not be activated. The output would

be a single double value.

3

A further objective which I aim to achieve is an effective approach to evaluating a board position

at any given time during game play. This evaluation function must be able to take in the current

board position, evaluate the positional advantages of both players and output a single double for

a given player to be fed into the value network. Furthermore, the evaluation function must be

able to project several layers beyond a particular node in the game tree to analyze the value state

of future board positions and return those values to the current layer so as to reflect an accurate

prediction of the current state of the board after adjustment.

The final deliverable at the end of the project shall provide a graphical user interface for any

human player to play Othello against IagoBot. Depending on how much time is left over at the

end, I will also consider discussing with other groups to develop a unified API by which

different versions of Othello programs may play continuously against one another and come up

with a ranking list determined by the relative strength of each program. In terms of target play-

strength, I aim for IagoBot to be able to beat me (a relatively good player) at the majority of

games we play.

Project Methodology

This project will comprise two phases: the construction phase, in which I create IagoBot as well

as its neural networks using Python, and the training phase, in which I feed the program sets of

training data over a period of several days to allow it to optimize its neural network weight

parameters.

For the construction phase, I have chosen Python as the language to code IagoBot due to several

reasons. Firstly, it is a dynamically typed language which allows for rapid-prototyping

development techniques. Secondly, it provides rich and diverse sets of library functions and APIs

developed by the open-source community, making it possible for me to plug rudimentary or

generic functions into my code, which in turn cuts down my overall development time. Such

libraries include but are not limited to: numpy for easy matrix manipulation, matplotlib to

quickly visualize the output of neural networks, pandas for data analysis and scikit-learn, which

is a very popular machine learning library. Moreover, Python is widely popular as a machine

learning language and there exists an active online community specializing in Python machine

learning which I could turn to should I require any help during the process.

fig.3: An illustration of the various library functions available to Python. Here, a logistic regression model is

imported and trained and new test data classified in just a few lines of code using scikit-learn and matplotlib.

4

IagoBot will utilize a form of tree-search algorithm to help it decide which move to make at each

turn. Ideally, the tree-search algorithm would be able to combine both the value and policy

networks in a single heuristic that selects what move to make via a lookahead search. I have yet

to decide which algorithm will be most suitable for Othello, but it will likely be a variation of

Monte-Carlo tree search which is used by AlphaGo.

In the second phase of this project, I will begin to train IagoBot by means of supervised learning.

To be sure, there are other methods of training, for instance reinforcement learning which is

popularly used to train AI programs to play classic Atari games such as Mario or Breakout.

However, I have decided that a reinforcement learning approach is not necessary for IagoBot

because it is overly complex and totally unnecessary for a relatively simple game (simple

meaning computationally inexpensive) like Othello. A supervised learning method would

stipulate feeding the program sets of training data which consist of sample games of Othello as

well as an analysis (target outcomes) of every player’s strength/likelihood to win within each of

those games. IagoBot would take these values as the “golden standard”, compare them with its

actual output at the end of each iteration, and adjust its weight matrix accordingly. The policy

network would be trained in a similar manner.

During this phase, I would be responsible for feeding IagoBot a series of sample games as

training data. These sample games will be stored as plain text documents, and under a unified

format. This is so that every group currently taking on this project can produce around 50 games

worth of data which are then to be shared with every other group. I plan to construct all my

training data by playing against an Othello program currently installed on my phone and

recording each step.

Risks, Challenges & Mitigation

Two potential issues must be addressed during the training phase of this project, namely:

oscillation of the loss function due to an incorrect learning rate and overfitting during regression.

The loss function L is the difference between the target value and the actual output from the

neural networks at the end of each iteration of training. Since L is expressed in terms of the

weight vectors, minimizing L would allow the neural network to know how much to adjust its

weight values. The speed at which the loss function is being reduced is controlled by the learning

rate µ. A problem arises when an improper µ is selected as illustrated below:

fig.4: Objective/loss function J(w) against weight w for different learning rate values.

5

If µ is too large as in the graph on the right, then there is a chance that the weight values would

overshoot the global minimum. Since the neural network has no knowledge of the actual location

of the optimal w value, and instead only knows its relative direction, there would be a tendency

for the direction to oscillate with ever increasing magnitudes. On the other hand if µ is too small,

then it would take a long time for weight to optimize, leading to wasted time and computational

resources. This is a potential pitfall that must be avoided during the training stage.

Regression is a category of machine learning that will be used to model the two neural networks

used in this project. It simplifies down to a problem of curve-fitting. Each point in figure 4 may

be seen as a data point from the set of training data in the 64
th

 dimensional space. Here, only 2

dimensions are shown for ease of illustration where x1 and x2 correspond to two cells on the

Othello board. The aim of IagoBot would be to adjust its weight matrix so that a curve is

produced that models the trend of the data as accurately as possible without overfitting (shown in

figure 4). The problem with overfitting is that sample data often contains noise, and an overfitted

curve rarely reflects what the actual model would look like. Furthermore, an overfitted curve

would introduce unnecessary complexity and slow down the program. On the other hand we

would also like to avoid underfitting by producing an overly simplistic curve.

The solution to this problem is to attach a penalty function or regularization function P(θ) to the

loss function which we are trying to minimize. P(θ) would serve to favor a simple curve over a

complex one by evaluating to a higher value for higher order curves, where θ represents the

weight value parameters.

x1

x2

Underfitting

(high bias)
x1

x2

Good

Compromise
x1

x2

Overfitting

(high variance)

fig.5: An illustration of the curves produced in a regression problem by selecting different regularization values

6

Tasks and Project Schedule & Milestones

Deadline Deliverables

September 30
th

, 2016 Familiarize with Monte-Carlo tree search algorithms.

Familiarize with linear regression and how it can be used to minimize

the loss function for a neural network using supervised learning.

October 8
th

, 2016 Record 50 sets of sample games to be shared with other groups.

October 31
st
, 2016 Design a viable valuation scheme that correctly assigns a numerical

value to any player during any given board position.

Design and begin coding deep neural network based on value scheme.

November 30
th

, 2016 Familiarize with minimax algorithms with alpha and beta pruning.

Finish Deep Learning Tutorial (by LISA lab, University of Montreal)

December 31
st
, 2016 Design and implement policy algorithm based on minimax algorithms.

January 31
st
, 2017 Interim report

Begin Testing on first version of IagoBot.

February 28
th

, 2017 Begin training stage, run continuous training data to optimize neural

network loss function.

Adjust codebase according to findings.

March 31
st
, 2017 Begin final round of human testing, collaborate with other groups to

produce standardized API for inter-group tournament if time allows.

April 21
st
, 2017 Deliver finalized implementation.

Submit final report for review.

7

Works Cited

i
 Go Game Guru [Internet]. [updated 2016 May 20; cited 2016 Sep 19]. Available from:

https://gogameguru.com/tag/deepmind-alphago-lee-sedol/

ii
 DeepMind [Internet]. USA: DeepMind. [nd; cited 2016 Sep 19]. Available from:

https://deepmind.com/research/alphago/

iii

 Buro M. Experiments with Multi-ProbCut and a New High-Quality Evaluation Function for

Othello. New Jersey (USA): NEC Research Institute; nd. Available at:

https://skatgame.net/mburo/ps/improve.pdf

iv Neural Network Models [Internet]. [nd; cited 2016 Sep 19]. Available from:

https://www.otexts.org/fpp/9/3

(fig.1 & fig.4) Raschka S. Python Machine Learning. 1
st
 ed. UK: Packt Publishing; 2015

